Responses of soil nutrient concentrations and stoichiometry to different human land uses in a subtropical tidal wetland.
نویسندگان
چکیده
We studied the impacts of anthropogenic changes in land use on the stoichiometric imbalance of soil carbon (C), nitrogen (N), phosphorus (P) and potassium (K) in Phragmites australis wetlands in the Minjiang River estuary. We compared five areas with different land uses: P. australis wetland (control), grassland, a mudskipper breeding flat, pond aquaculture and rice cropland. Human activity has affected the elemental and stoichiometric compositions of soils through changes in land use. In general, soil C and N concentrations were lower and total soil K concentrations were higher at the sites under human land uses relative to the control site, and total soil P concentrations were generally not significantly different. The close relationship between total soil C and N concentrations in all cases, including fertilization with N, suggested that N was the most limiting nutrient in these wetlands. Lower soil N concentrations and similar soil P concentrations and higher soil K concentrations under human land-use activities suggest that human activity has increased the role of N limitation in these wetlands. Only grassland use increases soil N contents (only in the 0-10 cm of soil). Despite N fertilization, lower soil N concentrations were also observed in the rice cropland, indicating the difficulty of avoiding N limitation in these wetlands. The observed lower soil N:P ratio, together with higher soil P and K availabilities in rice croplands, is consistent with the tendency of human activity to change the competitive relationships of plants, in this case favoring species adapted to high rates of growth (low N:P ratio) and/or favoring plants with high demands for P and K. Both, soil C storage and respiration were higher in grasslands, likely due to the introduction of grasses, which led to a high density of plants, increased grazing activity and soil compaction. Soil C storage and respiration were lower under human land uses, except in the rice cropland, with respect to natural wetland. Using overall data, soil C storage and respiration were correlated, indicating that soil respiration was correlated with plant productivity. In this wetland area the impacts of different human land-uses on soil stoichiometry and C-cycle can be very different depending on the activity. Further regeneration of natural communities can be determined by the previous type of land-use.
منابع مشابه
Intraspecific N and P stoichiometry of Phragmites australis: geographic patterns and variation among climatic regions
Geographic patterns in leaf stoichiometry reflect plant adaptations to environments. Leaf stoichiometry variations along environmental gradients have been extensively studied among terrestrial plants, but little has been known about intraspecific leaf stoichiometry, especially for wetland plants. Here we analyzed the dataset of leaf N and P of a cosmopolitan wetland species, Phragmites australi...
متن کاملAltitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China
Altitude is a determining factor of ecosystem properties and processes in mountains. This study investigated the changes in the concentrations of carbon (C), nitrogen (N), and phosphorus (P) and their ratios in four key ecosystem components (forest floor litter, fine roots, soil, and soil microorganisms) along an altitudinal gradient (from 50 m to 950 m a.s.l.) in subtropical China. The results...
متن کاملPhosphorus transformations during decomposition of wetland macrophytes.
The microbially mediated transformation of detrital P entering wetlands has important implications for the cycling and long-term sequestration of P in wetland soils. We investigated changes in P forms in sawgrass (Cladium jamaicense Crantz) and cattail (Typha domingensis Pers.) leaf litter during 15 months of decomposition at two sites of markedly different nutrient status within a hard-water s...
متن کاملAssessment of Blue Carbon Storage by Baja California (Mexico) Tidal Wetlands and Evidence for Wetland Stability in the Face of Anthropogenic and Climatic Impacts
Although saline tidal wetlands cover less than a fraction of one percent of the earth's surface (~0.01%), they efficiently sequester organic carbon due to high rates of primary production coupled with surfaces that aggrade in response to sea level rise. Here, we report on multi-decadal changes (1972-2008) in the extent of tidal marshes and mangroves, and characterize soil carbon density and sou...
متن کاملInvestigating Land Use and Slope Effects on Soil Properties, Runoff and Sediment Using Rainfall Simulator Case Study of Kechik Watershed in Golestan Province
INTRODUCTION Soil erosion and its issues are among the most important environmental challenges. In many areas, soil erosion affected valuable natural resources and soil fertility. The recognition of the factors affecting runoff and soil erosion, and the determination of their issues are essential for soil and water management conducive to sustainable development. The assessment and analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Geoderma
دوره 232-234 شماره
صفحات -
تاریخ انتشار 2014